Approximate solutions of Lagrange multipliers for information-theoretic random field models

نویسندگان

  • B Staber
  • Johann Guilleminot
چکیده

This work is concerned with the construction of approximate solutions for the Lagrange multipliers involved in information-theoretic non-Gaussian random field models. Specifically, representations of physical fields with invariance properties under some orthogonal transformations are considered. A methodology for solving the optimization problems raised by entropy maximization (for the family of first-order marginal probability distributions) is first presented and exemplified in the case of elasticity fields exhibiting fluctuations in a given symmetry class. Results for all classes ranging from isotropy to orthotropy are provided and discussed. The derivations are subsequently used for proving a few properties that are required in order to sample the above models by solving a family of stochastic differential equations – along the lines of the algorithm constructed in [9]. The results thus allow for forward simulations of the probabilistic models in stochastic boundary value problems, as well as for a reduction of the computational cost associated with model calibration through statistical inverse problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical Investigation of Jeffery-hamel Fow with High Magnetic Field and Nano Particle by RVIM

Many researchers have been interested in application of mathematical methods to find analytical solutions of nonlinear equations and for this purpose, new methods have been developed. One of the newest analytical methods to solve nonlinear equations is Reconstruction of variational Iteration Method (RVIM) which is an accurate and a rapid convergence method in finding the approximate solution fo...

متن کامل

Solving time-fractional chemical engineering equations by modified variational iteration method as fixed point iteration method

The variational iteration method(VIM) was extended to find approximate solutions of fractional chemical engineering equations. The Lagrange multipliers of the VIM were not identified explicitly. In this paper we improve the VIM by using concept of fixed point iteration method. Then this method was implemented for solving system of the time fractional chemical engineering equations. The ob...

متن کامل

Convergent discretization of heat and wave map flows to spheres using approximate discrete Lagrange multipliers

We propose fully discrete schemes to approximate the harmonic map heat flow and wave maps into spheres. The finite-element based schemes preserve a unit length constraint at the nodes by means of approximate discrete Lagrange multipliers, satisfy a discrete energy law, and iterates are shown to converge to weak solutions of the continuous problem. Comparative computational studies are included ...

متن کامل

A numerical implementation of the variational iteration method for the Lienard equation

In this paper, by considering the variational iteration method, a kind of explicit exact and numerical solutions to the Lienard equation is obtained, and the numerical solutions has been compared with their known theoretical solution. The variational iteration method is based on Lagrange multipliers for identification of optimal value of parameters in a functional. Using this method, it is poss...

متن کامل

Convex Stochastic Duality and the ÔBiting LemmaÔ

The paper analyzes dynamic problems of stochastic optimization in discrete time. The problems under consideration are concerned with maximizing concave functionals on convex sets of feasible strategies (programs). Feasibility is defined in terms of linear inequality constraints in L∞ holding almost surely. The focus of the work is the existence of dual variables – stochastic Lagrange multiplier...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017